Ultraviolet exposure and vitamin d synthesis in a sun-dwelling and a shade-dwelling species of anolis: are there adaptations for lower ultraviolet B and dietary vitamin d3 availability in the shade?

Ferguson GW, Gehrmann WH, Karsten KB, Landwer AJ, Carman EN, Chen TC, Holick MF.

Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA.

We compared the natural ultraviolet B (UV-B) exposure, dietary vitamin D, and skingenerated vitamin D synthesis for adult males of two species of Jamaican anoles. The more shade-tolerant and thermal-conforming Anolis lineotopus merope, rarely exposed to full sun, experienced less UV-B irradiation in its shady environment than the more heliophilic and thermophilic Anolis sagrei, which frequently basked in full sun during the morning hours (0800-1100 hours). Both species obtained detectable levels of vitamin D(3) in their diet, but the heliophilic A. sagrei obtained more. To compensate for less availability of UV-B and dietary vitamin D, the skin of A. lineotopus merope seems to have acquired a greater sensitivity than that of A. sagrei regarding UV-B-induced vitamin D(3) photobiosynthesis. We assessed this by observing a greater conversion of provitamin D to photoproducts in skin exposed to UV-B from a sunlamp. The reduced skin sensitivity of A. sagrei regarding vitamin D photobiosynthesis may reflect a correlated response associated with less need for vitamin D photobiosynthesis and greater need for UV-B screening capacity as an adaptation to a more damaging UV-B environment. However, the possibility that adaptations for photobiosynthesis of vitamin D and for protection from skin damage could involve independent mechanisms needs investigation. Also, the ability to behaviorally regulate UV-B exposure, as shown for the panther chameleon, would benefit both species of Anolis and should be investigated.

PMID: 15778939 [PubMed - in process]